Last updated: 2022-06-02

Checks: 6 1

Knit directory: EMBRAPAImputation2022/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has staged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220303) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 95ddcaf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/DArT2018/
    Ignored:    data/DArT2020/
    Ignored:    data/DArT2022/
    Ignored:    data/GBS/
    Ignored:    output/DArT2022/

Untracked files:
    Untracked:  DArTCommonMkrs.log
    Untracked:  MkrsRefandStudyPop.txt
    Untracked:  analysis/CheckImp.Rmd
    Untracked:  analysis/Duplicates.Rmd
    Untracked:  analysis/ImputationEMBRAPA_DCas22_6902.Rmd
    Untracked:  analysis/PrepareGenData.Rmd
    Untracked:  code/.DS_Store
    Untracked:  code/plink/
    Untracked:  data/AllDArTDuplicates.txt
    Untracked:  data/CommonMkrsGBSDArT
    Untracked:  data/CommonMkrsGBSDArT.txt
    Untracked:  data/CommonMkrsGBSDArTIssues
    Untracked:  data/DArTClones.csv
    Untracked:  data/DArTDupDiscordanceIndex.csv
    Untracked:  data/DArTDuplicates1.txt
    Untracked:  data/DArTDuplicates2.txt
    Untracked:  data/DArTDuplicates3.txt
    Untracked:  data/DArTDuplicates4.txt
    Untracked:  data/DArTGPInfo.csv
    Untracked:  data/DArTGPInfo.xlsx
    Untracked:  data/DArTGPInfo2.csv
    Untracked:  data/DArTGPInfo2.xlsx
    Untracked:  data/DArTGenotypingPlates/
    Untracked:  out.log
    Untracked:  output/AllChrDCas22_6902_StudyPopimputed.vcf.gz
    Untracked:  output/AllChrDCas22_6902_StudyPopimputed.vcf.gz.tbi
    Untracked:  output/AllChrGBSandDArTsitesCommonClones_RefPopImputed.vcf.gz
    Untracked:  output/AllChrGBSandDArTsitesCommonClones_RefPopImputed.vcf.gz.tbi
    Untracked:  output/BRTP_Phenotyping2022.txt
    Untracked:  output/DCas22_6902/
    Untracked:  output/DCas22_6902RefPopImputed.vcf.gz
    Untracked:  output/Dados GBS Atualizados.RData
    Untracked:  output/DadosGBSAtualizados.rds
    Untracked:  output/DadosGBSAtualizadosRenomeados.rds
    Untracked:  output/Duplicates/
    Untracked:  output/Figures/
    Untracked:  output/GBSDArTPCA.rds
    Untracked:  output/GmatrixDArTGS.rds
    Untracked:  output/GmatrixGBSandDArTGS.rds
    Untracked:  output/RefPop/
    Untracked:  output/StudyPop/

Unstaged changes:
    Modified:   .DS_Store
    Modified:   analysis/DArTImp.Rmd
    Modified:   analysis/GBS_DArTImp.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/index.Rmd
    Modified:   data/.DS_Store
    Modified:   output/.DS_Store
    Modified:   output/out.log

Staged changes:
    Modified:   .DS_Store
    New:        analysis/DArTImp.Rmd
    New:        analysis/GBS_DArTImp.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Imputation of the DArT Markers only

Imputation is performed by chromosome

java -Xms2g -Xmx [maxmem] -jar /programs/beagle/beagle.jar gt= [targetVCF] map= [mapFile] out= [outName] nthreads= [nthreads] impute= [impute]  ne=  [ne]
runBeagle5Luc <- function(targetVCF, mapFile, outName, nthreads, maxmem = "500g", 
    impute = TRUE, ne = 1e+05, samplesToExclude = NULL){
  system(paste0("java -Xms2g -Xmx", maxmem, " -jar /programs/beagle/beagle.jar ", 
                "gt=", targetVCF, " ", "map=", mapFile, " ",
                "out=", outName, " ", "nthreads=", nthreads, 
                " impute=", impute, " ne=", ne,
                ifelse(!is.null(samplesToExclude),
                       paste0(" excludesamples=", samplesToExclude), "")))}

targetVCFpath<-here::here("output/") # location of the targetVCF
mapPath<-here::here("data", "CassavaGeneticMapV6updated/")
outPath<-here::here("output/")
outSuffix<-"DCas22_6902"

library(tidyverse); library(magrittr); 
purrr::map(1:18,
           ~runBeagle5Luc(targetVCF=paste0(targetVCFpath,"chr",.,
                                           "_DCas22_6902_DArTseqLD_AllSites_AllChrom_rawFiltered.vcf.gz"),
                          mapFile=paste0(mapPath,"chr",.,
                                         "_cassava_cM_pred.v6_91019.map"),
                          outName=paste0(outPath,"chr",.,
                                         "_DCas22_6902_DArT_imputed"),
                          nthreads=110))

Organize the Beagle logs in a directory

cd ~/Desktop/Genotyping/DArT/EMBRAPA/DCas22_6902/output/
mkdir BeagleLogs
cp *_DCas22_6902_DArT_imputed.log BeagleLogs/.
rm *_DCas22_6902_DArT_imputed.log

Post Imputation Filter

Standard post-imputation filter: \(CR≥0.6\), \(MAF≥(1/7827)^2\).

Loop to filter all 18 VCF files in parallel

inPath<-here::here("output/")
outPath<-here::here("output/")

require(furrr); plan(multisession, workers = 18)

future_map(1:18,
           ~FilterLuc(inPath=inPath,
                      inName=paste0("chr",.,"_DCas22_6902_DArT_imputed"),
                      outPath=outPath,
                      outName=paste0("chr",.,"_DCas22_6902_DArT_imputedAndFiltered"),
                      CRthresh = 0.6))
plan(sequential)

Let’s check what we got

purrr::map(1:18,~system(paste0("zcat ",here::here("output/"),"chr",.,"_DCas22_6902_DArT_imputedAndFiltered.vcf.gz | wc -l")))
Chr 1 - 1064
Chr 2 - 696
Chr 3 - 682
Chr 4 - 682
Chr 5 - 634
Chr 6 - 656
Chr 7 - 428
Chr 8 - 532
Chr 9 - 520
Chr 10 - 664
Chr 11 - 591
Chr 12 - 468
Chr 13 - 508
Chr 14 - 707
Chr 15 - 516
Chr 16 - 437
Chr 17 - 543
Chr 18 - 480

Formats for GS and GWAS Analysis

library(tidyverse); library(magrittr)
### Joint all the 18 Chromosome VCF to one unique file
inPath <- here::here("output/")
future_map(1:18,~system(paste0("tabix -f -p vcf ",inPath,
                               "chr",.,"_DCas22_6902_DArT_imputedAndFiltered.vcf.gz")))

system(paste0("bcftools concat ",
              "--output ",
              "AllChrom_DArT_ReadyForGP_2022May05.vcf.gz ",
              "--output-type z --threads 7 ",
              paste0("chr",1:18,
                     "_DCas22_6902_DArT_imputedAndFiltered.vcf.gz",
                     collapse = " ")))

### Post Imputation Filter function
postImputeFilterLuc <- function(inPath=NULL,inName,outPath=NULL,outName,HWEthresh=1e-20){
  require(magrittr); require(dplyr)
  # Extract imputation quality scores (DR2 and AF) from VCF
  system(paste0("vcftools --gzvcf ",inPath,inName,".vcf.gz --hardy --out ",outPath,inName))

  # Read scores into R
  hwe<-read.table(paste0(outPath,inName,".hwe"),
                  stringsAsFactors = F, header = T)
  stats2filterOn<-hwe %>% rename(CHROM=CHR)
  # Compute MAF from AF and make sure numeric
  # Identify sites passing filter
  sitesPassingFilters<-stats2filterOn %>%
    dplyr::filter(P_HWE>HWEthresh) %>%
    dplyr::select(CHROM,POS)
  print(paste0(nrow(sitesPassingFilters)," sites passing filter"))

  # Write a list of positions passing filter to disk
  write.table(sitesPassingFilters,
              file = paste0(outPath,inName,".sitesPassing"),
              row.names = F, col.names = F, quote = F)
  # Apply filter to vcf file with vcftools
  system(paste0("vcftools --gzvcf ",inPath,inName,".vcf.gz"," ",
                "--positions ",outPath,inName,".sitesPassing"," ",
                "--recode --stdout | bgzip -c -@ 24 > ",
                outPath,outName,".vcf.gz"))
  print(paste0("Filtering Complete: ",outName))
}


inPath<-here::here("")
outPath<-here::here("")
ncores <- 7
nclones <- 7827
require(furrr); options(mc.cores=ncores); plan(multiprocess)
postImputeFilterLuc(inPath=inPath,
                                     inName=paste0("AllChrom_DArT_ReadyForGP_2022May05"),
                                     outPath=outPath,
                                     outName=paste0("AllChrom_DArT_ReadyForGP_2022May30"))

system(paste0("vcftools --gzvcf output/AllChrom_DArT_ReadyForGP_2022May30.vcf.gz --maf 0.00025",
              " --recode --stdout | bgzip -c -@ 7 > output/AllChrom_DArT_ReadyForGPFil_2022May30.vcf.gz"))
dgenomicMateSelectR::convertVCFtoDosage(pathIn = "output/", pathOut = "output/",
                                       vcfName = "AllChrom_DArT_ReadyForGPFil_2022May30")

snps <- read.table(file = here::here("output", "AllChrom_DArT_ReadyForGPFil_2022May30.raw"),
                   stringsAsFactor=F, header = T) %>%
                     dplyr::select(-FID,-PAT,-MAT,-SEX,-PHENOTYPE) %>%
                     column_to_rownames(var = "IID") %>%
                     as.matrix()
saveRDS(snps,file = here::here("output", "DCas22_DArT_ReadyForGP_Dos.rds"))

Markers Density

library(tidyverse); library(CMplot)
snps <- readRDS(file = here::here("output", "DArT2022", "DCas22_DArt_ReadyForGP_Dos.rds"))

CMsnps <- tibble(SNP = colnames(snps),
                 chr = substring(SNP,1,3),
                 pos = substring(SNP,4)) %>%
  mutate(chr = gsub(pattern = "_", replacement = "", x = chr) %>%
           gsub(pattern = "S", replacement = "") %>% as.integer,
         pos = gsub(pattern = "_[A-Z]", replacement = "", x = pos) %>%
           gsub(pattern = "_", replacement = "", x = .) %>% as.integer)
CMplot(CMsnps, plot.type = "d", bin.size = 1e6, col = c("darkgreen", "yellow", "red"),
       file = "jpg", memo = "DArTDensityMkrs", dpi = 500, file.output = T, verbose = TRUE)

Fig 1. Density Markers for DArT genotyping

Principal Components Analysis


sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Big Sur 11.6.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] magrittr_2.0.3    data.table_1.14.3 forcats_0.5.1     stringr_1.4.0    
 [5] dplyr_1.0.9       purrr_0.3.4       readr_2.1.2       tidyr_1.2.0      
 [9] tibble_3.1.7      ggplot2_3.3.6     tidyverse_1.3.1  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3     here_1.0.1       lubridate_1.8.0  assertthat_0.2.1
 [5] rprojroot_2.0.3  digest_0.6.29    utf8_1.2.2       R6_2.5.1        
 [9] cellranger_1.1.0 backports_1.4.1  reprex_2.0.1     evaluate_0.15   
[13] highr_0.9        httr_1.4.3       pillar_1.7.0     rlang_1.0.2     
[17] readxl_1.4.0     rstudioapi_0.13  jquerylib_0.1.4  rmarkdown_2.14  
[21] labeling_0.4.2   munsell_0.5.0    broom_0.8.0      compiler_4.1.2  
[25] httpuv_1.6.5     modelr_0.1.8     xfun_0.30        pkgconfig_2.0.3 
[29] htmltools_0.5.2  tidyselect_1.1.2 workflowr_1.7.0  fansi_1.0.3     
[33] crayon_1.5.1     tzdb_0.3.0       dbplyr_2.1.1     withr_2.5.0     
[37] later_1.3.0      grid_4.1.2       jsonlite_1.8.0   gtable_0.3.0    
[41] lifecycle_1.0.1  DBI_1.1.2        git2r_0.30.1     scales_1.2.0    
[45] cli_3.3.0        stringi_1.7.6    farver_2.1.0     fs_1.5.2        
[49] promises_1.2.0.1 xml2_1.3.3       bslib_0.3.1      ellipsis_0.3.2  
[53] generics_0.1.2   vctrs_0.4.1      tools_4.1.2      glue_1.6.2      
[57] hms_1.1.1        fastmap_1.1.0    yaml_2.3.5       colorspace_2.0-3
[61] rvest_1.0.2      knitr_1.38       haven_2.5.0      sass_0.4.1